Nuprl Lemma : is-list-if-has-value-decomp

t:ListLike
  ((t)↓
   (((↑isaxiom(t)) ∧ (t Ax ∈ Unit)) ∨ ((↑ispair(t)) ∧ (∃a:Top. ∃b:ListLike. (t = <a, b> ∈ (Top × ListLike))))))


Proof




Definitions occuring in Statement :  is-list-if-has-value: ListLike has-value: (a)↓ assert: b bfalse: ff btrue: tt top: Top ispair: if is pair then otherwise b isaxiom: if Ax then otherwise b all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q unit: Unit pair: <a, b> product: x:A × B[x] equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) or: P ∨ Q assert: b btrue: tt and: P ∧ Q true: True exists: x:A. B[x] bfalse: ff false: False subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a ext-eq: A ≡ B
Lemmas referenced :  is-list-if-has-value-hv-prp is-list-if-has-value_wf istype-assert istype-top istype-void product-value-type equal-value-type bunion-value-type top_wf unit_wf2 b-union_wf termination is-list-if-has-value-ext bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType imageElimination productElimination unionElimination equalityElimination sqequalRule inlEquality_alt closedConclusion independent_pairEquality axiomEquality natural_numberEquality productIsType equalityIsType2 because_Cache baseClosed inrEquality_alt dependent_pairEquality_alt equalityIsType1 voidElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination applyEquality lambdaEquality_alt intEquality independent_isectElimination productEquality

Latex:
\mforall{}t:ListLike
    ((t)\mdownarrow{}  {}\mRightarrow{}  (((\muparrow{}isaxiom(t))  \mwedge{}  (t  =  Ax))  \mvee{}  ((\muparrow{}ispair(t))  \mwedge{}  (\mexists{}a:Top.  \mexists{}b:ListLike.  (t  =  <a,  b>)))))



Date html generated: 2019_10_16-AM-11_38_04
Last ObjectModification: 2018_10_31-PM-02_27_33

Theory : eval!all


Home Index