Nuprl Lemma : is-list-if-has-value-rec-subtype-unit
∀[t:Base]. (is-list-if-has-value-rec(t) ⊆r Unit)
Proof
Definitions occuring in Statement : 
is-list-if-has-value-rec: is-list-if-has-value-rec(t)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
is-list-if-has-value-rec: is-list-if-has-value-rec(t)
, 
is-list-if-has-value-fun: is-list-if-has-value-fun(t;n)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
top: Top
, 
unit: Unit
Lemmas referenced : 
false_wf, 
le_wf, 
primrec0_lemma, 
is-list-if-has-value-rec_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
lemma_by_obid, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[t:Base].  (is-list-if-has-value-rec(t)  \msubseteq{}r  Unit)
Date html generated:
2016_05_15-PM-10_08_41
Last ObjectModification:
2015_12_27-PM-06_00_04
Theory : eval!all
Home
Index