Nuprl Lemma : list-strict_wf

[F:Base]. (list-strict(F) ∈ ℙ)


Proof




Definitions occuring in Statement :  list-strict: list-strict(F) uall: [x:A]. B[x] prop: member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list-strict: list-strict(F) prop: and: P ∧ Q so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x] or: P ∨ Q exists: x:A. B[x]
Lemmas referenced :  strict_wf exists_wf sqequal-wf-base or_wf has-value_wf_base base_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality baseApply closedConclusion baseClosed hypothesisEquality because_Cache dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Base].  (list-strict(F)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-10_07_47
Last ObjectModification: 2016_01_16-PM-04_08_18

Theory : eval!all


Home Index