Nuprl Lemma : non-void-decl_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[d:a:T fp-> Type]. (non-void(d) ∈ ℙ')
Proof
Definitions occuring in Statement :
non-void-decl: non-void(d)
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
non-void-decl: non-void(d)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
so_apply: x[s1;s2]
Lemmas referenced :
fpf-all_wf,
assert_wf,
fpf-dom_wf,
subtype-fpf2,
top_wf,
fpf_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesisEquality,
lambdaEquality,
universeEquality,
setEquality,
applyEquality,
hypothesis,
independent_isectElimination,
lambdaFormation,
isect_memberEquality,
voidElimination,
voidEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[d:a:T fp-> Type]. (non-void(d) \mmember{} \mBbbP{}')
Date html generated:
2018_05_21-PM-09_30_19
Last ObjectModification:
2018_02_09-AM-10_24_52
Theory : finite!partial!functions
Home
Index