Nuprl Lemma : adjacent-sublist

[T:Type]. ∀L1,L2:T List.  (L1 ⊆ L2  (∀x,y:T.  (adjacent(T;L1;x;y)  before y ∈ L2)))


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) l_before: before y ∈ l sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} prop:
Lemmas referenced :  l_before_sublist adjacent-before adjacent_wf sublist_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  (\mforall{}x,y:T.    (adjacent(T;L1;x;y)  {}\mRightarrow{}  x  before  y  \mmember{}  L2)))



Date html generated: 2016_05_15-PM-03_41_26
Last ObjectModification: 2015_12_27-PM-01_17_45

Theory : general


Home Index