Nuprl Lemma : adjacent-before

[T:Type]. ∀L:T List. ∀x,y:T.  (adjacent(T;L;x;y)  before y ∈ L)


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) l_before: before y ∈ l list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l adjacent: adjacent(T;L;x;y) sublist: L1 ⊆ L2 all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  le: A ≤ B bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m increasing: increasing(f;k) cand: c∧ B nat: less_than': less_than'(a;b) subtype_rel: A ⊆B ge: i ≥  select: L[n] cons: [a b] eq_int: (i =z j)
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma exists_wf int_seg_wf subtract_wf length_wf equal_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf itermAdd_wf int_term_value_add_lemma list_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int lelt_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-member-int_seg2 intformeq_wf int_formula_prop_eq_lemma increasing_wf le_wf all_wf cons_wf nil_wf non_neg_length length_wf_nat nat_properties decidable__equal_int int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation productElimination isectElimination natural_numberEquality cumulativity hypothesisEquality lambdaEquality productEquality because_Cache setElimination rename independent_isectElimination unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed addEquality universeEquality equalityElimination dependent_set_memberEquality instantiate independent_functionElimination functionExtensionality applyEquality applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x,y:T.    (adjacent(T;L;x;y)  {}\mRightarrow{}  x  before  y  \mmember{}  L)



Date html generated: 2018_05_21-PM-06_39_20
Last ObjectModification: 2017_07_26-PM-04_53_22

Theory : general


Home Index