Nuprl Lemma : adjacent-to-same-sublist

[T:Type]
  ∀L1,L2:T List. ∀a,b,c:T.
    L1 ⊆ L2  adjacent(T;L1;b;a)  adjacent(T;L2;c;a)  (b before c ∈ L2 ∨ (b c ∈ T)) supposing no_repeats(T;L2)


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) l_before: before y ∈ l sublist: L1 ⊆ L2 no_repeats: no_repeats(T;l) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop:
Lemmas referenced :  no_repeats_witness adjacent-sublist before-adjacent adjacent_wf sublist_wf no_repeats_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename because_Cache dependent_functionElimination independent_isectElimination universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2:T  List.  \mforall{}a,b,c:T.
        L1  \msubseteq{}  L2  {}\mRightarrow{}  adjacent(T;L1;b;a)  {}\mRightarrow{}  adjacent(T;L2;c;a)  {}\mRightarrow{}  (b  before  c  \mmember{}  L2  \mvee{}  (b  =  c)) 
        supposing  no\_repeats(T;L2)



Date html generated: 2016_05_15-PM-03_41_59
Last ObjectModification: 2015_12_27-PM-01_18_07

Theory : general


Home Index