Nuprl Lemma : all-large_wf
∀[P:ℕ ⟶ ℙ]. (∀large(n).P[n] ∈ ℙ)
Proof
Definitions occuring in Statement : 
all-large: ∀large(n).P[n]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all-large: ∀large(n).P[n]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
nat_wf, 
all_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
functionEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (\mforall{}large(n).P[n]  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-05_29_19
Last ObjectModification:
2015_12_27-PM-02_11_18
Theory : general
Home
Index