Nuprl Lemma : assert-is_prime
∀n:ℕ. (↑is_prime(n) 
⇐⇒ prime(n))
Proof
Definitions occuring in Statement : 
is_prime: is_prime(n)
, 
prime: prime(a)
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
is_prime: is_prime(n)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
bfalse: ff
, 
false: False
, 
not: ¬A
Lemmas referenced : 
nat_wf, 
decidable__prime, 
subtype_rel_self, 
decidable_wf, 
prime_wf, 
true_wf, 
false_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
applyEquality, 
thin, 
instantiate, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
unionElimination, 
independent_pairFormation, 
natural_numberEquality, 
voidElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  (\muparrow{}is\_prime(n)  \mLeftarrow{}{}\mRightarrow{}  prime(n))
Date html generated:
2018_05_21-PM-06_59_11
Last ObjectModification:
2018_05_19-PM-04_41_51
Theory : general
Home
Index