Nuprl Lemma : assert-is_prime

n:ℕ(↑is_prime(n) ⇐⇒ prime(n))


Proof




Definitions occuring in Statement :  is_prime: is_prime(n) prime: prime(a) nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] is_prime: is_prime(n) member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] nat: prop: implies:  Q decidable: Dec(P) or: P ∨ Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q true: True bfalse: ff false: False not: ¬A
Lemmas referenced :  nat_wf decidable__prime subtype_rel_self decidable_wf prime_wf true_wf false_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis applyEquality thin instantiate sqequalRule sqequalHypSubstitution isectElimination functionEquality setElimination rename hypothesisEquality because_Cache unionElimination independent_pairFormation natural_numberEquality voidElimination independent_functionElimination equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  (\muparrow{}is\_prime(n)  \mLeftarrow{}{}\mRightarrow{}  prime(n))



Date html generated: 2018_05_21-PM-06_59_11
Last ObjectModification: 2018_05_19-PM-04_41_51

Theory : general


Home Index