Nuprl Lemma : can-apply-compose-sq

[A,B,C:Type]. ∀[g:A ⟶ (B Top)]. ∀[f:B ⟶ (C Top)]. ∀[x:A].
  (can-apply(f g;x) can-apply(g;x) ∧b can-apply(f;do-apply(g;x)))


Proof




Definitions occuring in Statement :  p-compose: g do-apply: do-apply(f;x) can-apply: can-apply(f;x) band: p ∧b q uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type sqequal: t
Definitions unfolded in proof :  do-apply: do-apply(f;x) can-apply: can-apply(f;x) p-compose: g member: t ∈ T all: x:A. B[x] implies:  Q isl: isl(x) outl: outl(x) ifthenelse: if then else fi  btrue: tt band: p ∧b q bfalse: ff uall: [x:A]. B[x] prop:
Lemmas referenced :  top_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut applyEquality functionExtensionality hypothesisEquality cumulativity thin unionEquality introduction extract_by_obid hypothesis lambdaFormation unionElimination sqequalHypSubstitution isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache functionEquality universeEquality isect_memberFormation sqequalAxiom isect_memberEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].  \mforall{}[x:A].
    (can-apply(f  o  g;x)  \msim{}  can-apply(g;x)  \mwedge{}\msubb{}  can-apply(f;do-apply(g;x)))



Date html generated: 2017_10_01-AM-09_13_30
Last ObjectModification: 2017_07_26-PM-04_48_53

Theory : general


Home Index