Nuprl Lemma : church-iZ

cZ ∈ church-inductive{i:l}(cZ)


Proof




Definitions occuring in Statement :  church-inductive: church-inductive{i:l}(x) church-zero: cZ member: t ∈ T
Definitions unfolded in proof :  church-zero: cZ church-inductive: church-inductive{i:l}(x) implies:  Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B church-Nat: cNat prop:
Lemmas referenced :  church-Nat_wf church-succ_wf trivial-equal istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberEquality_alt lambdaEquality_alt hypothesisEquality isectIsType universeIsType cut introduction extract_by_obid hypothesis functionIsType applyEquality thin because_Cache sqequalHypSubstitution instantiate isectElimination inhabitedIsType universeEquality

Latex:
cZ  \mmember{}  church-inductive\{i:l\}(cZ)



Date html generated: 2020_05_20-AM-08_05_36
Last ObjectModification: 2019_11_15-PM-10_34_14

Theory : general


Home Index