Nuprl Lemma : church-iZ
cZ ∈ church-inductive{i:l}(cZ)
Proof
Definitions occuring in Statement : 
church-inductive: church-inductive{i:l}(x)
, 
church-zero: cZ
, 
member: t ∈ T
Definitions unfolded in proof : 
church-zero: cZ
, 
church-inductive: church-inductive{i:l}(x)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
church-Nat: cNat
, 
prop: ℙ
Lemmas referenced : 
church-Nat_wf, 
church-succ_wf, 
trivial-equal, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberEquality_alt, 
lambdaEquality_alt, 
hypothesisEquality, 
isectIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
functionIsType, 
applyEquality, 
thin, 
because_Cache, 
sqequalHypSubstitution, 
instantiate, 
isectElimination, 
inhabitedIsType, 
universeEquality
Latex:
cZ  \mmember{}  church-inductive\{i:l\}(cZ)
Date html generated:
2020_05_20-AM-08_05_36
Last ObjectModification:
2019_11_15-PM-10_34_14
Theory : general
Home
Index