Nuprl Lemma : compat-iseg2
∀[T:Type]. ∀L1,L2,L3:T List.  (L1 ≤ L2 
⇒ L3 || L2 
⇒ L3 || L1)
Proof
Definitions occuring in Statement : 
compat: l1 || l2
, 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
compat_symmetry, 
compat-iseg, 
compat_wf, 
iseg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L3:T  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  L3  ||  L2  {}\mRightarrow{}  L3  ||  L1)
Date html generated:
2016_05_15-PM-03_50_23
Last ObjectModification:
2015_12_27-PM-01_23_12
Theory : general
Home
Index