Nuprl Lemma : compat-iseg2

[T:Type]. ∀L1,L2,L3:T List.  (L1 ≤ L2  L3 || L2  L3 || L1)


Proof




Definitions occuring in Statement :  compat: l1 || l2 iseg: l1 ≤ l2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q prop:
Lemmas referenced :  compat_symmetry compat-iseg compat_wf iseg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination independent_functionElimination because_Cache hypothesis universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L3:T  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  L3  ||  L2  {}\mRightarrow{}  L3  ||  L1)



Date html generated: 2016_05_15-PM-03_50_23
Last ObjectModification: 2015_12_27-PM-01_23_12

Theory : general


Home Index