Nuprl Lemma : conjugate_wf
∀[n:ℕ]. ∀[f,g:ℕn →⟶ ℕn].  (conjugate(f;g) ∈ ℕn →⟶ ℕn)
Proof
Definitions occuring in Statement : 
conjugate: conjugate(f;g)
, 
injection: A →⟶ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
conjugate: conjugate(f;g)
, 
nat: ℕ
Lemmas referenced : 
compose_wf-injection, 
int_seg_wf, 
funinv_wf3, 
injection_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n].    (conjugate(f;g)  \mmember{}  \mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n)
Date html generated:
2016_05_15-PM-06_12_27
Last ObjectModification:
2015_12_27-PM-00_12_15
Theory : general
Home
Index