Nuprl Lemma : conjugate_wf

[n:ℕ]. ∀[f,g:ℕn →⟶ ℕn].  (conjugate(f;g) ∈ ℕn →⟶ ℕn)


Proof




Definitions occuring in Statement :  conjugate: conjugate(f;g) injection: A →⟶ B int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T conjugate: conjugate(f;g) nat:
Lemmas referenced :  compose_wf-injection int_seg_wf funinv_wf3 injection_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n].    (conjugate(f;g)  \mmember{}  \mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n)



Date html generated: 2016_05_15-PM-06_12_27
Last ObjectModification: 2015_12_27-PM-00_12_15

Theory : general


Home Index