Nuprl Lemma : continuous'-monotone-constant

[A:Type]. continuous'-monotone{i:l}(T.A)


Proof




Definitions occuring in Statement :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B type-monotone: Monotone(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B type-continuous': semi-continuous(λT.F[T]) tunion: x:A.B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: pi2: snd(t)
Lemmas referenced :  type-incr-chain_wf le_wf false_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality hypothesisEquality axiomEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_pairFormation imageMemberEquality dependent_pairEquality dependent_set_memberEquality natural_numberEquality lambdaFormation cumulativity baseClosed productElimination independent_pairEquality

Latex:
\mforall{}[A:Type].  continuous'-monotone\{i:l\}(T.A)



Date html generated: 2016_05_15-PM-06_53_38
Last ObjectModification: 2016_01_16-AM-09_48_27

Theory : general


Home Index