Nuprl Lemma : continuous'-monotone-constant
∀[A:Type]. continuous'-monotone{i:l}(T.A)
Proof
Definitions occuring in Statement : 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
type-monotone: Monotone(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
type-continuous': semi-continuous(λT.F[T])
, 
tunion: ⋃x:A.B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pi2: snd(t)
Lemmas referenced : 
type-incr-chain_wf, 
le_wf, 
false_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_pairFormation, 
imageMemberEquality, 
dependent_pairEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaFormation, 
cumulativity, 
baseClosed, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}[A:Type].  continuous'-monotone\{i:l\}(T.A)
Date html generated:
2016_05_15-PM-06_53_38
Last ObjectModification:
2016_01_16-AM-09_48_27
Theory : general
Home
Index