Nuprl Lemma : convolution_wf

[A,B,C:Type]. ∀[f:A ⟶ B ⟶ C ⟶ C]. ∀[c0:C]. ∀[L1:A List]. ∀[L2:B List].  (convolution(a,b,c.f[a;b;c];c0;L1;L2) ∈ C)


Proof




Definitions occuring in Statement :  convolution: convolution(a,b,c.f[a; b; c];c0;L1;L2) list: List uall: [x:A]. B[x] so_apply: x[s1;s2;s3] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T convolution: convolution(a,b,c.f[a; b; c];c0;L1;L2) so_lambda: λ2y.t[x; y] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cps-accum_wf list_wf list_ind_wf pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality hypothesis lambdaEquality spreadEquality independent_pairEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[c0:C].  \mforall{}[L1:A  List].  \mforall{}[L2:B  List].
    (convolution(a,b,c.f[a;b;c];c0;L1;L2)  \mmember{}  C)



Date html generated: 2016_05_15-PM-03_48_37
Last ObjectModification: 2015_12_27-PM-01_21_34

Theory : general


Home Index