Nuprl Lemma : convolution_wf
∀[A,B,C:Type]. ∀[f:A ⟶ B ⟶ C ⟶ C]. ∀[c0:C]. ∀[L1:A List]. ∀[L2:B List].  (convolution(a,b,c.f[a;b;c];c0;L1;L2) ∈ C)
Proof
Definitions occuring in Statement : 
convolution: convolution(a,b,c.f[a; b; c];c0;L1;L2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
convolution: convolution(a,b,c.f[a; b; c];c0;L1;L2)
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
cps-accum_wf, 
list_wf, 
list_ind_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
hypothesis, 
lambdaEquality, 
spreadEquality, 
independent_pairEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[c0:C].  \mforall{}[L1:A  List].  \mforall{}[L2:B  List].
    (convolution(a,b,c.f[a;b;c];c0;L1;L2)  \mmember{}  C)
Date html generated:
2016_05_15-PM-03_48_37
Last ObjectModification:
2015_12_27-PM-01_21_34
Theory : general
Home
Index