Nuprl Lemma : decidable__uimplies
∀[P:ℙ]. ∀Q:⋂x:P. ℙ. (Dec(P) 
⇒ Dec(Q) supposing P 
⇒ Dec(Q supposing P))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
isect: ⋂x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
not: ¬A
, 
false: False
Lemmas referenced : 
isect_wf, 
decidable_wf, 
isect_subtype_rel_trivial, 
subtype_rel_weakening, 
ext-eq_weakening, 
subtype_rel_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
instantiate, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
dependent_pairFormation, 
because_Cache, 
hypothesis, 
isectEquality, 
unionElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation, 
inrFormation, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}Q:\mcap{}x:P.  \mBbbP{}.  (Dec(P)  {}\mRightarrow{}  Dec(Q)  supposing  P  {}\mRightarrow{}  Dec(Q  supposing  P))
Date html generated:
2016_05_15-PM-03_37_48
Last ObjectModification:
2015_12_27-PM-01_15_52
Theory : general
Home
Index