Nuprl Lemma : decidable__uimplies

[P:ℙ]. ∀Q:⋂x:P. ℙ(Dec(P)  Dec(Q) supposing  Dec(Q supposing P))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q isect: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: uimplies: supposing a so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q guard: {T} not: ¬A false: False
Lemmas referenced :  isect_wf decidable_wf isect_subtype_rel_trivial subtype_rel_weakening ext-eq_weakening subtype_rel_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule hypothesisEquality lambdaEquality applyEquality instantiate cumulativity universeEquality independent_isectElimination dependent_pairFormation because_Cache hypothesis isectEquality unionElimination rename equalityTransitivity equalitySymmetry inlFormation inrFormation independent_functionElimination voidElimination

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}Q:\mcap{}x:P.  \mBbbP{}.  (Dec(P)  {}\mRightarrow{}  Dec(Q)  supposing  P  {}\mRightarrow{}  Dec(Q  supposing  P))



Date html generated: 2016_05_15-PM-03_37_48
Last ObjectModification: 2015_12_27-PM-01_15_52

Theory : general


Home Index