Nuprl Lemma : exists-elim
∀[T:Type]. ∀[P:T ⟶ ℙ'].  ∀a:T. ((∀x:T. (P[x] ⇒ (x = a ∈ T))) ⇒ {∃x:T. P[x] ⇐⇒ P[a]})
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q
Lemmas referenced : 
and_wf, 
equal_wf, 
exists_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
applyEquality, 
levelHypothesis, 
instantiate, 
cumulativity, 
lambdaEquality, 
functionExtensionality, 
dependent_pairFormation, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}'].    \mforall{}a:T.  ((\mforall{}x:T.  (P[x]  {}\mRightarrow{}  (x  =  a)))  {}\mRightarrow{}  \{\mexists{}x:T.  P[x]  \mLeftarrow{}{}\mRightarrow{}  P[a]\})
Date html generated:
2017_10_01-AM-09_11_10
Last ObjectModification:
2017_07_26-PM-04_47_18
Theory : general
Home
Index