Nuprl Lemma : exists-elim
∀[T:Type]. ∀[P:T ⟶ ℙ']. ∀a:T. ((∀x:T. (P[x]
⇒ (x = a ∈ T)))
⇒ {∃x:T. P[x]
⇐⇒ P[a]})
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
rev_implies: P
⇐ Q
Lemmas referenced :
and_wf,
equal_wf,
exists_wf,
all_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
independent_pairFormation,
sqequalHypSubstitution,
productElimination,
thin,
cut,
hypothesis,
dependent_functionElimination,
hypothesisEquality,
independent_functionElimination,
addLevel,
hyp_replacement,
equalitySymmetry,
dependent_set_memberEquality,
introduction,
extract_by_obid,
isectElimination,
applyLambdaEquality,
setElimination,
rename,
applyEquality,
levelHypothesis,
instantiate,
cumulativity,
lambdaEquality,
functionExtensionality,
dependent_pairFormation,
functionEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}']. \mforall{}a:T. ((\mforall{}x:T. (P[x] {}\mRightarrow{} (x = a))) {}\mRightarrow{} \{\mexists{}x:T. P[x] \mLeftarrow{}{}\mRightarrow{} P[a]\})
Date html generated:
2017_10_01-AM-09_11_10
Last ObjectModification:
2017_07_26-PM-04_47_18
Theory : general
Home
Index