Nuprl Lemma : exists-elim

[T:Type]. ∀[P:T ⟶ ℙ'].  ∀a:T. ((∀x:T. (P[x]  (x a ∈ T)))  {∃x:T. P[x] ⇐⇒ P[a]})


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] member: t ∈ T prop: so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q
Lemmas referenced :  and_wf equal_wf exists_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination addLevel hyp_replacement equalitySymmetry dependent_set_memberEquality introduction extract_by_obid isectElimination applyLambdaEquality setElimination rename applyEquality levelHypothesis instantiate cumulativity lambdaEquality functionExtensionality dependent_pairFormation functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}'].    \mforall{}a:T.  ((\mforall{}x:T.  (P[x]  {}\mRightarrow{}  (x  =  a)))  {}\mRightarrow{}  \{\mexists{}x:T.  P[x]  \mLeftarrow{}{}\mRightarrow{}  P[a]\})



Date html generated: 2017_10_01-AM-09_11_10
Last ObjectModification: 2017_07_26-PM-04_47_18

Theory : general


Home Index