Nuprl Lemma : exists-simp
∀[T:Type]. ∀a:T. ∀P:T ⟶ ℙ.  ((∀x:T. (P[x] 
⇒ (x = a ∈ T))) 
⇒ (∃x:T. P[x] 
⇐⇒ P[a]))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
and_wf, 
equal_wf, 
exists_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
cumulativity, 
functionExtensionality, 
dependent_pairFormation, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}a:T.  \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x:T.  (P[x]  {}\mRightarrow{}  (x  =  a)))  {}\mRightarrow{}  (\mexists{}x:T.  P[x]  \mLeftarrow{}{}\mRightarrow{}  P[a]))
Date html generated:
2016_10_25-AM-10_43_29
Last ObjectModification:
2016_07_12-AM-06_53_46
Theory : general
Home
Index