Nuprl Lemma : formula-definition

[A:Type]. ∀[R:A ⟶ formula() ⟶ ℙ].
  ((∀name:Atom. {x:A| R[x;pvar(name)]} )
   (∀sub:formula(). ({x:A| R[x;sub]}   {x:A| R[x;pnot(sub)]} ))
   (∀left,right:formula().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;pand(left;right)]} ))
   (∀left,right:formula().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;por(left;right)]} ))
   (∀left,right:formula().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;pimp(left;right)]} ))
   {∀v:formula(). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  pimp: pimp(left;right) por: por(left;right) pand: pand(left;right) pnot: pnot(sub) pvar: pvar(name) formula: formula() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] prop:
Lemmas referenced :  formula-induction set_wf formula_wf all_wf pimp_wf por_wf pand_wf pnot_wf pvar_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesis sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesisEquality applyEquality because_Cache independent_functionElimination functionEquality universeEquality atomEquality cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  formula()  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}name:Atom.  \{x:A|  R[x;pvar(name)]\}  )
    {}\mRightarrow{}  (\mforall{}sub:formula().  (\{x:A|  R[x;sub]\}    {}\mRightarrow{}  \{x:A|  R[x;pnot(sub)]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;pand(left;right)]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;por(left;right)]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;pimp(left;right)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:formula().  \{x:A|  R[x;v]\}  \})



Date html generated: 2016_05_15-PM-07_11_39
Last ObjectModification: 2015_12_27-AM-11_32_34

Theory : general


Home Index