Nuprl Lemma : formula-definition
∀[A:Type]. ∀[R:A ⟶ formula() ⟶ ℙ].
  ((∀name:Atom. {x:A| R[x;pvar(name)]} )
  
⇒ (∀sub:formula(). ({x:A| R[x;sub]}  
⇒ {x:A| R[x;pnot(sub)]} ))
  
⇒ (∀left,right:formula().  ({x:A| R[x;left]}  
⇒ {x:A| R[x;right]}  
⇒ {x:A| R[x;pand(left;right)]} ))
  
⇒ (∀left,right:formula().  ({x:A| R[x;left]}  
⇒ {x:A| R[x;right]}  
⇒ {x:A| R[x;por(left;right)]} ))
  
⇒ (∀left,right:formula().  ({x:A| R[x;left]}  
⇒ {x:A| R[x;right]}  
⇒ {x:A| R[x;pimp(left;right)]} ))
  
⇒ {∀v:formula(). {x:A| R[x;v]} })
Proof
Definitions occuring in Statement : 
pimp: pimp(left;right)
, 
por: por(left;right)
, 
pand: pand(left;right)
, 
pnot: pnot(sub)
, 
pvar: pvar(name)
, 
formula: formula()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
formula-induction, 
set_wf, 
formula_wf, 
all_wf, 
pimp_wf, 
por_wf, 
pand_wf, 
pnot_wf, 
pvar_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
atomEquality, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  formula()  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}name:Atom.  \{x:A|  R[x;pvar(name)]\}  )
    {}\mRightarrow{}  (\mforall{}sub:formula().  (\{x:A|  R[x;sub]\}    {}\mRightarrow{}  \{x:A|  R[x;pnot(sub)]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;pand(left;right)]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;por(left;right)]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;pimp(left;right)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:formula().  \{x:A|  R[x;v]\}  \})
Date html generated:
2016_05_15-PM-07_11_39
Last ObjectModification:
2015_12_27-AM-11_32_34
Theory : general
Home
Index