Nuprl Lemma : generalized-markov-principle_wf

[A:ℕ ⟶ ℙ]. (GMPi.A[i]) ∈ ℙ)


Proof




Definitions occuring in Statement :  generalized-markov-principle: GMPi.A[i]) nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T generalized-markov-principle: GMPi.A[i]) implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  not_wf all_wf nat_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality

Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (GMPi.A[i])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-03_20_48
Last ObjectModification: 2015_12_27-PM-01_03_58

Theory : general


Home Index