Nuprl Lemma : isect-subtype-2
∀[G:Type ⟶ Type]. ∀[A,B:Type]. ∀[F:G[A] ⟶ G[B] ⟶ Type]. ∀[X:G[A]]. ∀[Y:G[B]].
  ((⋂X:G[A]. ⋂Y:G[B].  F[X;Y]) ⊆r F[X;Y])
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
sqequalHypSubstitution, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
thin, 
isectEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
cumulativity, 
lambdaFormation, 
extract_by_obid, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality
Latex:
\mforall{}[G:Type  {}\mrightarrow{}  Type].  \mforall{}[A,B:Type].  \mforall{}[F:G[A]  {}\mrightarrow{}  G[B]  {}\mrightarrow{}  Type].  \mforall{}[X:G[A]].  \mforall{}[Y:G[B]].
    ((\mcap{}X:G[A].  \mcap{}Y:G[B].    F[X;Y])  \msubseteq{}r  F[X;Y])
Date html generated:
2017_10_01-AM-09_10_45
Last ObjectModification:
2017_07_26-PM-04_47_04
Theory : general
Home
Index