Nuprl Lemma : isect-subtype-2

[G:Type ⟶ Type]. ∀[A,B:Type]. ∀[F:G[A] ⟶ G[B] ⟶ Type]. ∀[X:G[A]]. ∀[Y:G[B]].
  ((⋂X:G[A]. ⋂Y:G[B].  F[X;Y]) ⊆F[X;Y])


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] so_apply: x[s1;s2] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality isectElimination sqequalHypSubstitution hypothesisEquality equalityTransitivity equalitySymmetry hypothesis thin isectEquality applyEquality functionExtensionality universeEquality cumulativity lambdaFormation extract_by_obid dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache functionEquality

Latex:
\mforall{}[G:Type  {}\mrightarrow{}  Type].  \mforall{}[A,B:Type].  \mforall{}[F:G[A]  {}\mrightarrow{}  G[B]  {}\mrightarrow{}  Type].  \mforall{}[X:G[A]].  \mforall{}[Y:G[B]].
    ((\mcap{}X:G[A].  \mcap{}Y:G[B].    F[X;Y])  \msubseteq{}r  F[X;Y])



Date html generated: 2017_10_01-AM-09_10_45
Last ObjectModification: 2017_07_26-PM-04_47_04

Theory : general


Home Index