Nuprl Lemma : iseg-l-ordered
∀[T:Type]. ∀R:T ⟶ T ⟶ ℙ. ∀a,b:T List.  (a ≤ b 
⇒ l-ordered(T;x,y.R[x;y];b) 
⇒ l-ordered(T;x,y.R[x;y];a))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
l-ordered-is-sorted-by, 
iseg-sorted-by, 
l-ordered_wf, 
iseg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}a,b:T  List.    (a  \mleq{}  b  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];b)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];a))
Date html generated:
2016_05_15-PM-04_39_16
Last ObjectModification:
2015_12_27-PM-02_41_44
Theory : general
Home
Index