Nuprl Lemma : iseg-l-ordered

[T:Type]. ∀R:T ⟶ T ⟶ ℙ. ∀a,b:T List.  (a ≤  l-ordered(T;x,y.R[x;y];b)  l-ordered(T;x,y.R[x;y];a))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) iseg: l1 ≤ l2 list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  l-ordered-is-sorted-by iseg-sorted-by l-ordered_wf iseg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesis productElimination independent_functionElimination because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}a,b:T  List.    (a  \mleq{}  b  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];b)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];a))



Date html generated: 2016_05_15-PM-04_39_16
Last ObjectModification: 2015_12_27-PM-02_41_44

Theory : general


Home Index