Nuprl Lemma : l-ordered-is-sorted-by

[T:Type]. ∀R:T ⟶ T ⟶ ℙ. ∀L:T List.  (l-ordered(T;x,y.R[x;y];L) ⇐⇒ sorted-by(λx,y. R[x;y];L))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) sorted-by: sorted-by(R;L) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sorted-by: sorted-by(R;L) l-ordered: l-ordered(T;x,y.R[x; y];L) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] rev_implies:  Q l_before: before y ∈ l sublist: L1 ⊆ L2 le: A ≤ B less_than': less_than'(a;b) true: True subtype_rel: A ⊆B ge: i ≥  nat: select: L[n] cons: [a b] subtract: m increasing: increasing(f;k)
Lemmas referenced :  select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma l_before_select lelt_wf int_seg_wf all_wf l_before_wf length_of_cons_lemma length_of_nil_lemma false_wf non_neg_length length_wf_nat nat_properties equal_wf squash_wf true_wf cons_wf nil_wf itermAdd_wf int_term_value_add_lemma iff_weakening_equal list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin introduction extract_by_obid isectElimination because_Cache setElimination rename independent_isectElimination natural_numberEquality hypothesisEquality cumulativity productElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination independent_functionElimination dependent_set_memberEquality functionEquality applyEquality functionExtensionality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality instantiate universeEquality addEquality

Latex:
\mforall{}[T:Type].  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}L:T  List.    (l-ordered(T;x,y.R[x;y];L)  \mLeftarrow{}{}\mRightarrow{}  sorted-by(\mlambda{}x,y.  R[x;y];L))



Date html generated: 2018_05_21-PM-07_38_09
Last ObjectModification: 2017_07_26-PM-05_12_25

Theory : general


Home Index