Nuprl Lemma : l_before_select
∀[T:Type]. ∀L:T List. ∀i,j:ℕ||L||. L[j] before L[i] ∈ L supposing j < i
Proof
Definitions occuring in Statement :
l_before: x before y ∈ l
,
select: L[n]
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
l_before: x before y ∈ l
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
prop: ℙ
,
int_seg: {i..j-}
Lemmas referenced :
member-less_than,
sublist_pair,
less_than_wf,
int_seg_wf,
length_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
independent_isectElimination,
hypothesis,
rename,
hypothesisEquality,
dependent_functionElimination,
setElimination,
natural_numberEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}L:T List. \mforall{}i,j:\mBbbN{}||L||. L[j] before L[i] \mmember{} L supposing j < i
Date html generated:
2016_05_14-AM-07_45_39
Last ObjectModification:
2015_12_26-PM-02_53_32
Theory : list_1
Home
Index