Nuprl Lemma : lastn_wf
∀[A:Type]. ∀[L:A List]. ∀[n:ℤ].  (lastn(n;L) ∈ A List)
Proof
Definitions occuring in Statement : 
lastn: lastn(n;L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
lastn: lastn(n;L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
nth_tl_wf, 
subtract_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[n:\mBbbZ{}].    (lastn(n;L)  \mmember{}  A  List)
Date html generated:
2016_05_15-PM-03_35_37
Last ObjectModification:
2015_12_27-PM-01_14_04
Theory : general
Home
Index