Nuprl Lemma : lastn_wf
∀[A:Type]. ∀[L:A List]. ∀[n:ℤ]. (lastn(n;L) ∈ A List)
Proof
Definitions occuring in Statement :
lastn: lastn(n;L)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
lastn: lastn(n;L)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
nth_tl_wf,
subtract_wf,
length_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
intEquality,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[L:A List]. \mforall{}[n:\mBbbZ{}]. (lastn(n;L) \mmember{} A List)
Date html generated:
2016_05_15-PM-03_35_37
Last ObjectModification:
2015_12_27-PM-01_14_04
Theory : general
Home
Index