Nuprl Lemma : lifted-rel_wf

[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (lifted-rel(R) ∈ (A B) ⟶ (A B) ⟶ ℙ)


Proof




Definitions occuring in Statement :  lifted-rel: lifted-rel(R) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lifted-rel: lifted-rel(R) isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt implies:  Q prop: bfalse: ff and: P ∧ Q false: False
Lemmas referenced :  and_wf true_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality unionElimination thin sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination hypothesis functionEquality applyEquality hypothesisEquality productEquality voidElimination because_Cache unionEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (lifted-rel(R)  \mmember{}  (A  +  B)  {}\mrightarrow{}  (A  +  B)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_15-PM-06_35_23
Last ObjectModification: 2015_12_27-AM-11_55_46

Theory : general


Home Index