Nuprl Lemma : lifted-rel_wf
∀[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (lifted-rel(R) ∈ (A + B) ⟶ (A + B) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
lifted-rel: lifted-rel(R), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lifted-rel: lifted-rel(R), 
isl: isl(x), 
outl: outl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
implies: P ⇒ Q, 
prop: ℙ, 
bfalse: ff, 
and: P ∧ Q, 
false: False
Lemmas referenced : 
and_wf, 
true_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
unionElimination, 
thin, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
functionEquality, 
applyEquality, 
hypothesisEquality, 
productEquality, 
voidElimination, 
because_Cache, 
unionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (lifted-rel(R)  \mmember{}  (A  +  B)  {}\mrightarrow{}  (A  +  B)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_15-PM-06_35_23
Last ObjectModification:
2015_12_27-AM-11_55_46
Theory : general
Home
Index