Nuprl Lemma : nfoldunion_wf
∀[n:ℕ]. (nfoldunion(n) ∈ Type)
Proof
Definitions occuring in Statement : 
nfoldunion: nfoldunion(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
nfoldunion: nfoldunion(n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
top_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
unionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (nfoldunion(n)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-03_26_28
Last ObjectModification:
2015_12_27-PM-01_07_34
Theory : general
Home
Index