Nuprl Lemma : nfoldunion_wf

[n:ℕ]. (nfoldunion(n) ∈ Type)


Proof




Definitions occuring in Statement :  nfoldunion: nfoldunion(n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  nfoldunion: nfoldunion(n) uall: [x:A]. B[x] member: t ∈ T nat:
Lemmas referenced :  primrec_wf top_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality hypothesisEquality hypothesis lambdaEquality unionEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (nfoldunion(n)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-03_26_28
Last ObjectModification: 2015_12_27-PM-01_07_34

Theory : general


Home Index