Nuprl Lemma : not_subtype_rel

[A,B:Type].  A) ⊆B) supposing B ⊆A


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A subtype_rel: A ⊆B implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  subtype_rel_dep_function false_wf subtype_rel_self subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution hypothesisEquality applyEquality lemma_by_obid isectElimination thin sqequalRule hypothesis independent_isectElimination lambdaFormation because_Cache functionEquality axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].    (\mneg{}A)  \msubseteq{}r  (\mneg{}B)  supposing  B  \msubseteq{}r  A



Date html generated: 2016_05_15-PM-06_38_07
Last ObjectModification: 2015_12_27-AM-11_53_57

Theory : general


Home Index