Nuprl Lemma : not_subtype_rel
∀[A,B:Type].  (¬A) ⊆r (¬B) supposing B ⊆r A
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_rel_dep_function, 
false_wf, 
subtype_rel_self, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
sqequalRule, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
because_Cache, 
functionEquality, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].    (\mneg{}A)  \msubseteq{}r  (\mneg{}B)  supposing  B  \msubseteq{}r  A
Date html generated:
2016_05_15-PM-06_38_07
Last ObjectModification:
2015_12_27-AM-11_53_57
Theory : general
Home
Index