Nuprl Lemma : oobboth_wf

[A,B:Type]. ∀[bval:A × B].  (oobboth(bval) ∈ one_or_both(A;B))


Proof




Definitions occuring in Statement :  oobboth: oobboth(bval) one_or_both: one_or_both(A;B) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  oobboth: oobboth(bval) one_or_both: one_or_both(A;B) uall: [x:A]. B[x] member: t ∈ T
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut inlEquality hypothesisEquality unionEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry productEquality thin isect_memberEquality isectElimination because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[bval:A  \mtimes{}  B].    (oobboth(bval)  \mmember{}  one\_or\_both(A;B))



Date html generated: 2016_05_15-PM-05_31_30
Last ObjectModification: 2015_12_27-PM-02_09_57

Theory : general


Home Index