Nuprl Lemma : oobboth_wf
∀[A,B:Type]. ∀[bval:A × B].  (oobboth(bval) ∈ one_or_both(A;B))
Proof
Definitions occuring in Statement : 
oobboth: oobboth(bval)
, 
one_or_both: one_or_both(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
oobboth: oobboth(bval)
, 
one_or_both: one_or_both(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
inlEquality, 
hypothesisEquality, 
unionEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
thin, 
isect_memberEquality, 
isectElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[bval:A  \mtimes{}  B].    (oobboth(bval)  \mmember{}  one\_or\_both(A;B))
Date html generated:
2016_05_15-PM-05_31_30
Last ObjectModification:
2015_12_27-PM-02_09_57
Theory : general
Home
Index