Nuprl Lemma : pairwise-map1

[T,T':Type].  ∀f:T ⟶ T'. ∀L:T List.  ∀[P:T' ⟶ T' ⟶ ℙ']. ((∀x,y∈map(f;L).  P[x;y]) ⇐⇒ (∀x,y∈L.  P[f x;f y]))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) map: map(f;as) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a
Lemmas referenced :  pairwise-map subtype_rel_dep_function l_member_wf set_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination applyEquality sqequalRule lambdaEquality setEquality independent_isectElimination setElimination rename because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T,T':Type].
    \mforall{}f:T  {}\mrightarrow{}  T'.  \mforall{}L:T  List.    \mforall{}[P:T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}'].  ((\mforall{}x,y\mmember{}map(f;L).    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y\mmember{}L.    P[f  x;f  y]))



Date html generated: 2016_05_15-PM-03_59_22
Last ObjectModification: 2015_12_27-PM-03_05_58

Theory : general


Home Index