Nuprl Lemma : polymorphic-id-unique
∀f,g:⋂T:Type. (T ⟶ T).  (f = g ∈ (⋂T:Type. (T ⟶ T)))
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
isect_memberEquality, 
universeEquality, 
hypothesis, 
isectEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
functionExtensionality, 
isectElimination, 
setEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
thin, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
dependent_set_memberEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
addLevel, 
levelHypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
productElimination
Latex:
\mforall{}f,g:\mcap{}T:Type.  (T  {}\mrightarrow{}  T).    (f  =  g)
Date html generated:
2017_10_01-AM-09_07_11
Last ObjectModification:
2017_07_26-PM-04_46_44
Theory : general
Home
Index