Nuprl Lemma : polymorphic-id-unique

f,g:⋂T:Type. (T ⟶ T).  (f g ∈ (⋂T:Type. (T ⟶ T)))


Proof




Definitions occuring in Statement :  all: x:A. B[x] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] prop: implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut isect_memberEquality universeEquality hypothesis isectEquality cumulativity functionEquality hypothesisEquality functionExtensionality isectElimination setEquality introduction extract_by_obid sqequalHypSubstitution thin because_Cache equalityTransitivity equalitySymmetry applyEquality dependent_set_memberEquality sqequalRule lambdaEquality setElimination rename addLevel levelHypothesis dependent_functionElimination independent_functionElimination independent_pairFormation productElimination

Latex:
\mforall{}f,g:\mcap{}T:Type.  (T  {}\mrightarrow{}  T).    (f  =  g)



Date html generated: 2017_10_01-AM-09_07_11
Last ObjectModification: 2017_07_26-PM-04_46_44

Theory : general


Home Index