Nuprl Lemma : ppcc-test2

[T:Type]
  ∀f:T ⟶ T
    ∀[Q:T ⟶ ℙ]. ∀[P:T ⟶ T ⟶ ℙ].  ((∀z:T. (Q[z]  P[z;f[z]]))  (∀x,y:T.  Q[x]  P[x;y] supposing f[x] ∈ T))


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T prop: so_apply: x[s] so_lambda: λ2x.t[x] so_apply: x[s1;s2] guard: {T} and: P ∧ Q
Lemmas referenced :  equal_wf all_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename applyEquality functionExtensionality hypothesisEquality cumulativity extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality functionEquality universeEquality dependent_functionElimination independent_functionElimination hyp_replacement equalitySymmetry dependent_set_memberEquality independent_pairFormation equalityTransitivity setElimination productElimination setEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
            ((\mforall{}z:T.  (Q[z]  {}\mRightarrow{}  P[z;f[z]]))  {}\mRightarrow{}  (\mforall{}x,y:T.    Q[x]  {}\mRightarrow{}  P[x;y]  supposing  y  =  f[x]))



Date html generated: 2016_10_25-AM-10_43_36
Last ObjectModification: 2016_07_12-AM-06_53_50

Theory : general


Home Index