Nuprl Lemma : ppcc-test2
∀[T:Type]
  ∀f:T ⟶ T
    ∀[Q:T ⟶ ℙ]. ∀[P:T ⟶ T ⟶ ℙ].  ((∀z:T. (Q[z] 
⇒ P[z;f[z]])) 
⇒ (∀x,y:T.  Q[x] 
⇒ P[x;y] supposing y = f[x] ∈ T))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
and: P ∧ Q
Lemmas referenced : 
equal_wf, 
all_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
setElimination, 
productElimination, 
setEquality
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
            ((\mforall{}z:T.  (Q[z]  {}\mRightarrow{}  P[z;f[z]]))  {}\mRightarrow{}  (\mforall{}x,y:T.    Q[x]  {}\mRightarrow{}  P[x;y]  supposing  y  =  f[x]))
Date html generated:
2016_10_25-AM-10_43_36
Last ObjectModification:
2016_07_12-AM-06_53_50
Theory : general
Home
Index