Nuprl Lemma : sq_stable_and_decidable
∀[P:ℙ]. (Dec(P) 
⇒ (∀[Q:⋂x:P. ℙ]. (SqStable(P) 
⇒ (P 
⇒ SqStable(Q)) 
⇒ SqStable(P ∧ Q))))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
isect: ⋂x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
false: False
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
and: P ∧ Q
Lemmas referenced : 
decidable_wf, 
sq_stable__and, 
sq_stable_wf, 
isect_subtype_rel_trivial, 
subtype_rel_weakening, 
ext-eq_weakening, 
subtype_rel_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
applyEquality, 
instantiate, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
dependent_pairFormation, 
isectEquality, 
voidElimination, 
imageElimination, 
productElimination, 
productEquality, 
rename, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:\mBbbP{}].  (Dec(P)  {}\mRightarrow{}  (\mforall{}[Q:\mcap{}x:P.  \mBbbP{}].  (SqStable(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  SqStable(Q))  {}\mRightarrow{}  SqStable(P  \mwedge{}  Q))))
Date html generated:
2016_05_15-PM-03_14_22
Last ObjectModification:
2015_12_27-PM-01_02_12
Theory : general
Home
Index