Nuprl Lemma : strict-fun-connected-step

[T:Type]. ∀f:T ⟶ T. ∀x:T.  f+(x) supposing ¬((f x) x ∈ T)


Proof




Definitions occuring in Statement :  strict-fun-connected: f+(x) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: strict-fun-connected: f+(x) and: P ∧ Q cand: c∧ B decidable: Dec(P) guard: {T} or: P ∨ Q
Lemmas referenced :  equal_wf fun-connected-step not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination cumulativity applyEquality functionExtensionality hypothesis rename independent_functionElimination equalitySymmetry independent_pairFormation because_Cache inrFormation functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x:T.    f  x  =  f+(x)  supposing  \mneg{}((f  x)  =  x)



Date html generated: 2018_05_21-PM-07_45_17
Last ObjectModification: 2017_07_26-PM-05_22_42

Theory : general


Home Index