Nuprl Lemma : strict-fun-connected-step
∀[T:Type]. ∀f:T ⟶ T. ∀x:T.  f x = f+(x) supposing ¬((f x) = x ∈ T)
Proof
Definitions occuring in Statement : 
strict-fun-connected: y = f+(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
strict-fun-connected: y = f+(x)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
guard: {T}
, 
or: P ∨ Q
Lemmas referenced : 
equal_wf, 
fun-connected-step, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
rename, 
independent_functionElimination, 
equalitySymmetry, 
independent_pairFormation, 
because_Cache, 
inrFormation, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x:T.    f  x  =  f+(x)  supposing  \mneg{}((f  x)  =  x)
Date html generated:
2018_05_21-PM-07_45_17
Last ObjectModification:
2017_07_26-PM-05_22_42
Theory : general
Home
Index