Nuprl Lemma : sublist-rec-nil-iff

[T:Type]. ∀[l:T List].  uiff(sublist-rec(T;[];l);True)


Proof




Definitions occuring in Statement :  sublist-rec: sublist-rec(T;l1;l2) nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] true: True universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T true: True prop:
Lemmas referenced :  sublist-rec_wf nil_wf sublist-rec-nil true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation introduction cut natural_numberEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality rename universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    uiff(sublist-rec(T;[];l);True)



Date html generated: 2016_05_15-PM-03_33_55
Last ObjectModification: 2015_12_27-PM-01_12_53

Theory : general


Home Index