Nuprl Lemma : subtype_pos_polymorphism_test
((⋂T:Type. (ℙ ⟶ ℤ ⟶ (T × T + T))) ⊆r (ℙ ⟶ ℤ ⟶ (Void × Void + Void)))
∧ ((ℙ ⟶ ℤ ⟶ (Void × Void + Void)) ⊆r (⋂T:Type. (ℙ ⟶ ℤ ⟶ (T × T + T))))
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
void: Void
, 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_rel_dep_function, 
subtype_rel_union, 
subtype_rel_product
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaEquality, 
isectElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
isectEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
intEquality, 
unionEquality, 
productEquality, 
hypothesisEquality, 
thin, 
isect_memberEquality, 
cut, 
applyEquality, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
voidElimination
Latex:
((\mcap{}T:Type.  (\mBbbP{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  (T  \mtimes{}  T  +  T)))  \msubseteq{}r  (\mBbbP{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  (Void  \mtimes{}  Void  +  Void)))
\mwedge{}  ((\mBbbP{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  (Void  \mtimes{}  Void  +  Void))  \msubseteq{}r  (\mcap{}T:Type.  (\mBbbP{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  (T  \mtimes{}  T  +  T))))
Date html generated:
2016_05_15-PM-07_49_13
Last ObjectModification:
2015_12_27-AM-11_07_20
Theory : general
Home
Index