Nuprl Lemma : test-exists-elim
∀[A:Type]. ∀[Q:A ⟶ A ⟶ ℙ].  ∀x,b:A.  (∃z:A × A. (Q[fst(z);snd(z)] ∧ (z = <x, b> ∈ (A × A))) 
⇐⇒ Q[x;b] ∧ (x = x ∈ A))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
and_wf, 
equal_wf, 
pi1_wf, 
pi2_wf, 
subtype_rel_self, 
exists_wf, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
independent_functionElimination, 
dependent_pairFormation, 
because_Cache, 
hypothesis, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
productEquality, 
equalityTransitivity, 
applyLambdaEquality, 
setElimination, 
rename, 
lambdaEquality, 
applyEquality, 
independent_pairEquality, 
dependent_functionElimination, 
instantiate, 
promote_hyp
Latex:
\mforall{}[A:Type].  \mforall{}[Q:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}x,b:A.    (\mexists{}z:A  \mtimes{}  A.  (Q[fst(z);snd(z)]  \mwedge{}  (z  =  <x,  b>))  \mLeftarrow{}{}\mRightarrow{}  Q[x;b]  \mwedge{}  (x  =  x))
Date html generated:
2019_10_15-AM-11_06_52
Last ObjectModification:
2018_09_25-PM-00_08_23
Theory : general
Home
Index