Nuprl Lemma : test35

p:ℕ (ℕ ⟶ ℕ). ∀bs:ℕ List.  (case of inl(x) => inr(y) => 3 ∈ ℤ)


Proof




Definitions occuring in Statement :  list: List nat: all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  false_wf le_wf list_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut unionElimination thin sqequalRule addEquality sqequalHypSubstitution setElimination rename hypothesisEquality hypothesis natural_numberEquality applyEquality dependent_set_memberEquality independent_pairFormation lemma_by_obid isectElimination because_Cache unionEquality functionEquality

Latex:
\mforall{}p:\mBbbN{}  +  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{}).  \mforall{}bs:\mBbbN{}  List.    (case  p  of  inl(x)  =>  x  +  1  |  inr(y)  =>  y  3  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-07_48_16
Last ObjectModification: 2015_12_27-AM-11_08_20

Theory : general


Home Index