Nuprl Lemma : trivial-eq

[T:Type]. ∀[x:T].  {x x ∈ ⇐⇒ True}


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q true: True universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: rev_implies:  Q
Lemmas referenced :  equal_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation natural_numberEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    \{x  =  x  \mLeftarrow{}{}\mRightarrow{}  True\}



Date html generated: 2017_10_01-AM-09_11_18
Last ObjectModification: 2017_07_26-PM-04_47_22

Theory : general


Home Index