Nuprl Lemma : trivial-eq
∀[T:Type]. ∀[x:T].  {x = x ∈ T 
⇐⇒ True}
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    \{x  =  x  \mLeftarrow{}{}\mRightarrow{}  True\}
Date html generated:
2017_10_01-AM-09_11_18
Last ObjectModification:
2017_07_26-PM-04_47_22
Theory : general
Home
Index