Nuprl Lemma : ts-transitive-stable
∀ts:transition-system{i:l}
  ∀[R:ts-type(ts) ⟶ ts-type(ts) ⟶ ℙ]
    (Refl(ts-type(ts);x,y.R[x;y])
    
⇒ Trans(ts-type(ts);x,y.R[x;y])
    
⇒ ts-rel(ts) => λx,y. R[x;y]
    
⇒ ts-stable-rel(ts;x,y.R[x;y]))
Proof
Definitions occuring in Statement : 
ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y])
, 
ts-rel: ts-rel(ts)
, 
ts-type: ts-type(ts)
, 
transition-system: transition-system{i:l}
, 
rel_implies: R1 => R2
, 
trans: Trans(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y])
, 
member: t ∈ T
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
ts-stable: ts-stable(ts;x.P[x])
, 
rel_implies: R1 => R2
, 
guard: {T}
, 
trans: Trans(T;x,y.E[x; y])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
rel_star_wf, 
ts-type_wf, 
ts-rel_wf, 
rel_implies_wf, 
trans_wf, 
refl_wf, 
transition-system_wf, 
ts-stable-star
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
applyEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}ts:transition-system\{i:l\}
    \mforall{}[R:ts-type(ts)  {}\mrightarrow{}  ts-type(ts)  {}\mrightarrow{}  \mBbbP{}]
        (Refl(ts-type(ts);x,y.R[x;y])
        {}\mRightarrow{}  Trans(ts-type(ts);x,y.R[x;y])
        {}\mRightarrow{}  ts-rel(ts)  =>  \mlambda{}x,y.  R[x;y]
        {}\mRightarrow{}  ts-stable-rel(ts;x,y.R[x;y]))
Date html generated:
2016_05_15-PM-05_43_30
Last ObjectModification:
2015_12_27-PM-00_29_54
Theory : general
Home
Index