Nuprl Lemma : ts-transitive-stable

ts:transition-system{i:l}
  ∀[R:ts-type(ts) ⟶ ts-type(ts) ⟶ ℙ]
    (Refl(ts-type(ts);x,y.R[x;y])
     Trans(ts-type(ts);x,y.R[x;y])
     ts-rel(ts) => λx,y. R[x;y]
     ts-stable-rel(ts;x,y.R[x;y]))


Proof




Definitions occuring in Statement :  ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y]) ts-rel: ts-rel(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} rel_implies: R1 => R2 trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y]) member: t ∈ T prop: infix_ap: y so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] ts-stable: ts-stable(ts;x.P[x]) rel_implies: R1 => R2 guard: {T} trans: Trans(T;x,y.E[x; y]) so_lambda: λ2x.t[x] so_apply: x[s] refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  rel_star_wf ts-type_wf ts-rel_wf rel_implies_wf trans_wf refl_wf transition-system_wf ts-stable-star
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation applyEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality sqequalRule functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}ts:transition-system\{i:l\}
    \mforall{}[R:ts-type(ts)  {}\mrightarrow{}  ts-type(ts)  {}\mrightarrow{}  \mBbbP{}]
        (Refl(ts-type(ts);x,y.R[x;y])
        {}\mRightarrow{}  Trans(ts-type(ts);x,y.R[x;y])
        {}\mRightarrow{}  ts-rel(ts)  =>  \mlambda{}x,y.  R[x;y]
        {}\mRightarrow{}  ts-stable-rel(ts;x,y.R[x;y]))



Date html generated: 2016_05_15-PM-05_43_30
Last ObjectModification: 2015_12_27-PM-00_29_54

Theory : general


Home Index