Nuprl Lemma : ts-stable-star

ts:transition-system{i:l}
  ∀[P:ts-type(ts) ⟶ ℙ]. (ts-stable(ts;x.P[x])  (∀x,y:ts-type(ts).  (P[x]  (x (ts-rel(ts)^*) y)  P[y])))


Proof




Definitions occuring in Statement :  ts-stable: ts-stable(ts;x.P[x]) ts-rel: ts-rel(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q rel_star: R^* infix_ap: y exists: x:A. B[x] rel_exp: R^n member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q subtract: m bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q guard: {T} ts-stable: ts-stable(ts;x.P[x])
Lemmas referenced :  all_wf ts-type_wf infix_ap_wf rel_exp_wf decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf ts-rel_wf set_wf less_than_wf primrec-wf2 nat_wf rel_star_wf ts-stable_wf transition-system_wf eq_int_wf bool_wf equal-wf-base assert_wf and_wf equal_wf bnot_wf not_wf intformeq_wf int_formula_prop_eq_lemma exists_wf int_subtype_base uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution sqequalRule productElimination thin cut rename setElimination introduction extract_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality because_Cache functionEquality applyEquality functionExtensionality universeEquality instantiate cumulativity dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination baseClosed equalityTransitivity equalitySymmetry addLevel hyp_replacement applyLambdaEquality levelHypothesis productEquality baseApply closedConclusion equalityElimination impliesFunctionality

Latex:
\mforall{}ts:transition-system\{i:l\}
    \mforall{}[P:ts-type(ts)  {}\mrightarrow{}  \mBbbP{}]
        (ts-stable(ts;x.P[x])  {}\mRightarrow{}  (\mforall{}x,y:ts-type(ts).    (P[x]  {}\mRightarrow{}  (x  (ts-rel(ts)\^{}*)  y)  {}\mRightarrow{}  P[y])))



Date html generated: 2018_05_21-PM-08_01_47
Last ObjectModification: 2017_07_26-PM-05_38_34

Theory : general


Home Index