Nuprl Lemma : uall-unit

P:Unit ⟶ ℙ(∀[x:Unit]. P[x] ⇐⇒ P[⋅])


Proof




Definitions occuring in Statement :  it: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q unit: Unit function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T}
Lemmas referenced :  uall_wf unit_wf2 subtype_base_sq unit_subtype_base equal-unit it_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality applyEquality hypothesisEquality isect_memberFormation instantiate because_Cache independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}P:Unit  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}[x:Unit].  P[x]  \mLeftarrow{}{}\mRightarrow{}  P[\mcdot{}])



Date html generated: 2016_05_15-PM-03_24_47
Last ObjectModification: 2015_12_27-PM-01_06_13

Theory : general


Home Index