Nuprl Lemma : wellfounded-lex

[A:Type]. ∀[<A:A ⟶ A ⟶ ℙ].
  (WellFnd{i}(A;a,b.<A[a;b])
   (∀[B:Type]. ∀[<B:B ⟶ B ⟶ ℙ].
        (WellFnd{i}(B;a,b.<B[a;b])
         WellFnd{i}(A × B;p,q.<A[fst(p);fst(q)] ∨ (((fst(p)) (fst(q)) ∈ A) ∧ <B[snd(p);snd(q)])))))


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] pi1: fst(t) and: P ∧ Q pi2: snd(t) subtype_rel: A ⊆B or: P ∨ Q so_apply: x[s] so_lambda: λ2y.t[x; y]
Lemmas referenced :  all_wf or_wf equal_wf wellfounded_wf pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin rename cut dependent_functionElimination hypothesisEquality hypothesis productEquality cumulativity introduction extract_by_obid isectElimination sqequalRule lambdaEquality functionEquality because_Cache applyEquality functionExtensionality universeEquality independent_pairEquality independent_functionElimination unionElimination equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[<A:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(A;a,b.<A[a;b])
    {}\mRightarrow{}  (\mforall{}[B:Type].  \mforall{}[<B:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
                (WellFnd\{i\}(B;a,b.<B[a;b])
                {}\mRightarrow{}  WellFnd\{i\}(A  \mtimes{}  B;p,q.<A[fst(p);fst(q)]  \mvee{}  (((fst(p))  =  (fst(q)))  \mwedge{}  <B[snd(p);snd(q)])))))



Date html generated: 2018_05_21-PM-07_20_14
Last ObjectModification: 2017_07_26-PM-05_05_00

Theory : general


Home Index