Nuprl Lemma : wellfounded-lex
∀[A:Type]. ∀[<A:A ⟶ A ⟶ ℙ].
  (WellFnd{i}(A;a,b.<A[a;b])
  ⇒ (∀[B:Type]. ∀[<B:B ⟶ B ⟶ ℙ].
        (WellFnd{i}(B;a,b.<B[a;b])
        ⇒ WellFnd{i}(A × B;p,q.<A[fst(p);fst(q)] ∨ (((fst(p)) = (fst(q)) ∈ A) ∧ <B[snd(p);snd(q)])))))
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
pi1: fst(t), 
pi2: snd(t), 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
wellfounded: WellFnd{i}(A;x,y.R[x; y]), 
guard: {T}, 
all: ∀x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
pi1: fst(t), 
and: P ∧ Q, 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
all_wf, 
or_wf, 
equal_wf, 
wellfounded_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
cut, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
productEquality, 
cumulativity, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
universeEquality, 
independent_pairEquality, 
independent_functionElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[<A:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(A;a,b.<A[a;b])
    {}\mRightarrow{}  (\mforall{}[B:Type].  \mforall{}[<B:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
                (WellFnd\{i\}(B;a,b.<B[a;b])
                {}\mRightarrow{}  WellFnd\{i\}(A  \mtimes{}  B;p,q.<A[fst(p);fst(q)]  \mvee{}  (((fst(p))  =  (fst(q)))  \mwedge{}  <B[snd(p);snd(q)])))))
Date html generated:
2018_05_21-PM-07_20_14
Last ObjectModification:
2017_07_26-PM-05_05_00
Theory : general
Home
Index