Nuprl Lemma : dlattice-eq_wf

[X:Type]. ∀[as,bs:X List List].  (dlattice-eq(X;as;bs) ∈ ℙ)


Proof




Definitions occuring in Statement :  dlattice-eq: dlattice-eq(X;as;bs) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dlattice-eq: dlattice-eq(X;as;bs) prop: and: P ∧ Q
Lemmas referenced :  dlattice-order_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:X  List  List].    (dlattice-eq(X;as;bs)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-08_26_41
Last ObjectModification: 2017_01_21-PM-04_02_36

Theory : lattices


Home Index