Nuprl Lemma : dlattice-order_wf

[X:Type]. ∀[as,bs:X List List].  (as  bs ∈ ℙ)


Proof




Definitions occuring in Statement :  dlattice-order: as  bs list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dlattice-order: as  bs so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  l_all_wf2 list_wf l_exists_wf l_contains_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality setElimination rename setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:X  List  List].    (as  {}\mRightarrow{}  bs  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-08_26_27
Last ObjectModification: 2017_01_21-PM-03_49_16

Theory : lattices


Home Index