Nuprl Lemma : dlattice-order_wf
∀[X:Type]. ∀[as,bs:X List List].  (as 
⇒ bs ∈ ℙ)
Proof
Definitions occuring in Statement : 
dlattice-order: as 
⇒ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dlattice-order: as 
⇒ bs
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf2, 
list_wf, 
l_exists_wf, 
l_contains_wf, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:X  List  List].    (as  {}\mRightarrow{}  bs  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-08_26_27
Last ObjectModification:
2017_01_21-PM-03_49_16
Theory : lattices
Home
Index