Nuprl Lemma : p-type_wf

PType ∈ 𝕌'


Proof




Definitions occuring in Statement :  p-type: PType member: t ∈ T universe: Type
Definitions unfolded in proof :  p-type: PType member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] prop: subtype_rel: A ⊆B so_apply: x[s1;s2] uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q implies:  Q and: P ∧ Q
Lemmas referenced :  quotient_wf iff_wf equiv_rel_iff
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion universeEquality lambdaEquality_alt hypothesisEquality hypothesis applyEquality cumulativity inhabitedIsType equalityTransitivity equalitySymmetry universeIsType independent_isectElimination

Latex:
PType  \mmember{}  \mBbbU{}'



Date html generated: 2020_05_20-AM-08_24_29
Last ObjectModification: 2018_10_15-PM-01_15_36

Theory : lattices


Home Index