Nuprl Lemma : comb_for_reduce2_wf

λA,T,L,k,i,f,z. reduce2(f;k;i;L) ∈ A:Type ⟶ T:Type ⟶ L:(T List) ⟶ k:A ⟶ i:ℕ ⟶ f:(T ⟶ {i..i ||L||-} ⟶ A ⟶ A) ⟶\000C (↓True) ⟶ A


Proof




Definitions occuring in Statement :  reduce2: reduce2(f;k;i;as) length: ||as|| list: List int_seg: {i..j-} nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] add: m universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: nat:
Lemmas referenced :  reduce2_wf squash_wf true_wf istype-universe int_seg_wf length_wf nat_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType functionIsType setElimination rename addEquality because_Cache inhabitedIsType universeEquality

Latex:
\mlambda{}A,T,L,k,i,f,z.  reduce2(f;k;i;L)  \mmember{}  A:Type
{}\mrightarrow{}  T:Type
{}\mrightarrow{}  L:(T  List)
{}\mrightarrow{}  k:A
{}\mrightarrow{}  i:\mBbbN{}
{}\mrightarrow{}  f:(T  {}\mrightarrow{}  \{i..i  +  ||L||\msupminus{}\}  {}\mrightarrow{}  A  {}\mrightarrow{}  A)
{}\mrightarrow{}  (\mdownarrow{}True)
{}\mrightarrow{}  A



Date html generated: 2019_10_15-AM-10_54_55
Last ObjectModification: 2018_10_09-AM-10_21_31

Theory : list!


Home Index