Nuprl Lemma : cond_safety_and
∀[A:Type]. ∀[P,Q:(A List) ⟶ ℙ].
  (safety(A;x.P[x]) 
⇒ (∀tr1,tr2:A List.  (tr1 ≤ tr2 
⇒ P[tr2] 
⇒ Q[tr2] 
⇒ Q[tr1])) 
⇒ safety(A;x.P[x] ∧ Q[x]))
Proof
Definitions occuring in Statement : 
safety: safety(A;tr.P[tr])
, 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
safety: safety(A;tr.P[tr])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
Lemmas referenced : 
subtype_rel_self, 
iseg_wf, 
list_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
productEquality, 
applyEquality, 
hypothesisEquality, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
universeEquality, 
because_Cache, 
lambdaEquality, 
functionEquality, 
inhabitedIsType, 
functionIsType, 
universeIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[P,Q:(A  List)  {}\mrightarrow{}  \mBbbP{}].
    (safety(A;x.P[x])
    {}\mRightarrow{}  (\mforall{}tr1,tr2:A  List.    (tr1  \mleq{}  tr2  {}\mRightarrow{}  P[tr2]  {}\mRightarrow{}  Q[tr2]  {}\mRightarrow{}  Q[tr1]))
    {}\mRightarrow{}  safety(A;x.P[x]  \mwedge{}  Q[x]))
Date html generated:
2019_10_15-AM-10_54_15
Last ObjectModification:
2018_09_27-AM-10_45_49
Theory : list!
Home
Index