Nuprl Lemma : list_all_wf

[T:Type]. ∀[l:T List]. ∀[P:T ⟶ ℙ].  (list_all(x.P[x];l) ∈ ℙ)


Proof




Definitions occuring in Statement :  list_all: list_all(x.P[x];l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list_all: list_all(x.P[x];l) prop: and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  reduce_wf istype-universe true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality universeEquality lambdaEquality_alt productEquality applyEquality hypothesis because_Cache sqequalRule universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsType isect_memberEquality_alt

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (list\_all(x.P[x];l)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-10_53_57
Last ObjectModification: 2018_10_09-AM-10_28_15

Theory : list!


Home Index