Nuprl Lemma : safety_wf
∀[A:Type]. ∀[P:(A List) ⟶ ℙ].  (safety(A;x.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
safety: safety(A;tr.P[tr])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
safety: safety(A;tr.P[tr])
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
list_wf, 
iseg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
universeEquality, 
isect_memberEquality, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[P:(A  List)  {}\mrightarrow{}  \mBbbP{}].    (safety(A;x.P[x])  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_54_03
Last ObjectModification:
2018_09_27-AM-09_37_33
Theory : list!
Home
Index